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Abstract

Medical Waste is any type of waste either solid or liquid comprising of harmful materials
produced by healthcare facilities. It is trivially composed of biomass, and plastic waste in vary-
ing compositions. Improper handling of medical waste arises from the packing, segregation,
treatment and disposal of medical waste. This is a serious issue due to its adverse effects on the
enviromnent causing air, land and water pollution. To mitigate this issue, we have proposed
a few methods to convert the medical waste into syngas using a technique called pyrolysis. A
method called “plasma pyrolysis” has been explored in great detail. The generated syngas can
then be combusted to generate power. We have focussed our work towards developing a Deep
Learning model, that can learn from a dataset of simulations performed with different compo-
sitions of biomass, and can accurately predict the output power generated from a downdraft
biomass gasification power production plant based on the composition of the biomass as its
input parameters. The concepts of deep learning, neural network architecture, and optimization
has been explored in great detail. Furthermore, we have also identified a few key areas in which

development can be undertaken.
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1 Introduction

Medical waste (MW) consists of healthcare unit waste, medical laboratories waste, and
biomedical research centres waste, and its inappropriate handling raises serious risks of disease
transmission through exposure to infectious materials to the MW handlers, the health care per-

sonnel, the patients, and the public.

The need for MW management (MWM) has increased during the COVID-19 time mainly
due to the increase in MW amount and because MW creates significant dangers for the envi-
ronment and human health. The COVID-19 pandemic increased medical and municipal waste
generation, in many countries by 350-500%, especially plastic waste in developing and devel-
oped countries, showing the greatest feature of final disposal in Finland with 75% recycling while

lowest quality is in India where 90% is dumped.

Healthcare is a fast-developing industry due to the demand for more sophisticated /demand-
ing medical treatments, resulting in an increasing need for MW treatment (MWT) and MW
disposal (MWD). Since MW involves a significant quantity of hazardous substances, poor MWM
might lead to serious environmental and human health risks. Life cycle assessment (LCA) and
circular economy (CE) applied in the biomedical sector can deal with the medical, pharmaceu-
tical, and dental wastes, describe the ways of MWM, face the problem of dental waste; and

propose ways of ‘green circulation’ of this waste [4].

Thorough planning, usage of considerable mobile reprocessing facilities, and established pro-
cedures for discarding of MW could decrease the danger of COVID-19 spread in developing
countries. Tirkolaece and Aydin [2] developed a sustainable MWM system for collection and
transportation of MW in pandemics, they designed numerous various scales practical examples,
solved the problem using CPLEX solver, and they compared diverse conditions. They also inves-
tigated the practical implications. Moreover, He et al. optimized the problem of the automated
MW sorting system by taking into account the operational flow of MW [6]. They developed
a mixed-integer programming model for the optimization of the MW assignment, presorting

stations, and automated guided vehicles.

2 Theory and Literature Review

2.1 Causes of Medical Waste

Health-care waste contains potentially harmful microorganisms that can infect hospital pa-
tients, health workers and the general public. Other potential hazards may include drug-resistant
microorganisms which spread from health facilities into the environment. Adverse health out-

comes associated with health care waste and by-products also include:

e Sharps-inflicted injuries: Worldwide, an estimated 16 billion injections are administered
every year. Not all needles and syringes are disposed of safely, creating a risk of injury and

infection and opportunities for reuse. Injections with contaminated needles and syringes in



low- and middle-income countries have reduced substantially in recent years, partly due to
efforts to reduce reuse of injection devices. Despite this progress, in 2010, unsafe injections
were still responsible for as many as 33,800 new HIV infections, 1.7 million hepatitis B
infections and 315,000 hepatitis C infections. A person who experiences one needle stick
injury from a needle used on an infected source patient has risks of 30%, 1.8%, and 0.3%
respectively of becoming infected with HBV, HCV and HIV. Additional hazards occur
from scavenging at waste disposal sites and during the handling and manual sorting of
hazardous waste from health-care facilities. These practices are common in many regions
of the world, especially in low- and middle-income countries. The waste handlers are
at immediate risk of needle-stick injuries and exposure to toxic or infectious materials.
In 2015, a joint WHO/UNICEF assessment found that just over half (58%) of sampled
facilities from 24 countries had adequate systems in place for the safe disposal of health

care waste.

e Toxic exposure to pharmaceutical products, in particular, antibiotics and cytotoxic drugs
released into the surrounding environment, and to substances such as mercury or dioxins,

during the handling or incineration of health care wastes

e Chemical burns arising in the context of disinfection, sterilization or waste treatment

activities.

e Air pollution arising as a result of the release of particulate matter during medical waste
incineration; thermal injuries occurring in conjunction with open burning and the opera-

tion of medical waste incinerators; and radiation burns.

2.2 Environmental Impact of Medical Waste disposal

Treatment and disposal of healthcare waste may pose health risks indirectly through the re-
lease of pathogens and toxic pollutants into the environment. The disposal of untreated health
care wastes in landfills can lead to the contamination of drinking, surface, and ground waters if
those landfills are not properly constructed. The treatment of health care wastes with chemical
disinfectants can result in the release of chemical substances into the environment if those sub-

stances are not handled, stored and disposed in an environmentally sound manner.

Incineration of waste has been widely practised, but inadequate incineration or the incinera-
tion of unsuitable materials results in the release of pollutants into the air and in the generation
of ash residue. Incinerated materials containing or treated with chlorine can generate dioxins
and furans, which are human carcinogens and have been associated with a range of adverse
health effects. Incineration of heavy metals or materials with high metal content (in particular
lead, mercury and cadmium) can lead to the spread of toxic metals in the environment. Only
modern incinerators operating at 850-1100 °C and fitted with special gas-cleaning equipment

are able to comply with the international emission standards for dioxins and furans.



Alternatives to incineration such as autoclaving, microwaving, steam treatment integrated
with internal mixing, which minimize the formation and release of chemicals or hazardous emis-
sions should be given consideration in settings where there are sufficient resources to operate

and maintain such systems and dispose of the treated waste.

2.3 Medical Waste Classification

Waste and by-products cover a diverse range of materials, as the following list illustrates:

Classification of Medical Waste
Medical Waste Type Medical Waste Source

Infectious waste Waste contaminated with blood and other

bodily fluids (e.g., from discarded diagnos-
tic samples), cultures and stocks of infec-
tious agents from laboratory work (e.g.,
waste from autopsies and infected animals
from laboratories), or waste from patients
with infections (e.g., swabs, bandages and

disposable medical devices)

Pathological waste Human tissues, organs or fluids, body

parts and contaminated animal carcasses

Sharps Waste Syringes, needles, disposable scalpels and
blades, etc
Chemical waste Solvents and reagents used for laboratory

preparations, disinfectants, sterliants and
heavy metals contained in medical devices
(e.g., mercury in broken thermometers)

and batteries

Pharmaceutical waste Expired, unused and contaminated drugs

and vaccines

Cytotoxic waste Waste containing substances with geno-
toxic properties (i.e., highly hazardous
substances that are, mutagenic, terato-
genic or carcinogenic), such as cytotoxic
drugs used in cancer treatment and their

metabolites

Radioactive waste Products contaminated by radionuclides
including radioactive diagnostic material

or radiotherapeutic materials

Non-hazardous or general waste Waste that does not pose any particular
biological, chemical, radioactive or physi-

cal hazard.
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The major sources of health-care waste are:
e Hospitals and other health facilities.

e Laboratories and research centres.

e Mortuary and Autopsy centres.

e Animal research and testing laboratories.
e Blood banks and collection services.

e Nursing homes for the elderly.

High-income countries generate on average up to 0.5 kg of hazardous waste per hospital bed
per day; while low-income countries generate on average 0.2 kg. However, health-care waste is
often not separated into hazardous or non-hazardous wastes in low-income countries making the

real quantity of hazardous waste much higher.

In a study published by Chih-Shan Li and Fu-Tien Jenq [9], the physical and elemental
composition of the hospital waste at the National Taiwan University Hospital (NTUH), he esti-
mated daily waste generation rate at NTUH was 4,600 kg/day, which consisted of 4,100 kg/day
noninfectious refuse, 340 kg/day infectious waste, 70 kg/day kitchen waste, 50 kg/day patholog-
ical waste, and 40 kg/day plastic syringes. The NTUH waste consisted of 99.02% combustible
wastes and 0.97% noncombustible wastes by mass. The combustibie wastes constituted paper
(16.17%), textiles (9.77%), cardboard, wood, and leaves 1.12%), food waste (21.51%), and plas-
tics (50.45%). The noncombustible waste included 0.40% metal and 0.57% glass. Furthermore,
the analysis indicated that the wastes contained 38% moisture, 4% ashes, and 58% solid with an
average heat value of 3,400 kcal/kg. From the elemental analysis, the dominant elements were
found to be carbon (34%) and oxygen (15%).

2.4 Segregation of Medical Waste

Segregation refers to the basic separation of different categories of waste generated at source
and thereby reducing the risks as well as cost of handling and disposal. Segregation is the most
crucial step in bio-medical waste management. Effective segregation alone can ensure effective

biomedical waste management.

Segregation reduces the amount of waste needs special handling and treatment. Effective
segregation process prevents the mixture of medical waste like sharps with the general municipal
waste and prevents the illegal reuse of certain components of medical waste like used syringes,
needles and other plastics. It provides an opportunity for recycling certain components of
medical waste like plastics after proper and thorough disinfection. Recycled plastic material can
be used for non-food grade applications. Of the general waste, the biodegradable waste can be
composted within the hospital premises and can be used for gardening purposes. Recycling is

a good environmental practice, which can also double as a revenue generating activity. It also
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reduces the cost of treatment and disposal (80 per cent of a hospital’s waste is general waste,

which

does not require special treatment, provided it is not contaminated with other infectious

waste).

COLOUR CODING FOR SEGREGATION OF BIOMEDICALWASTE

CATEGORY TYPE OF WASTE TYPE OF BAG OR TREATMENT AND
CONTAINERTO BE DISPOSAL OPTION
USED
Yellow Human tissues, organs, Yellow coloured non Incineration or deep burial
body parts chlorinated plastic bags
Red Contaminated waste Red coloured non- Autoclaving or microwaving
(Recyclable) chlorinated plastic bags or chemical treatment

or containers

Black Discarded Black coloured non- Disposal in secured landfill

medicines/cytotoxic drugs, chlorinated plastic bags
incineration ash, chemical

waste
Blue/white Waste sharps(needles, Cardboard boxes with Autoclaving or microwaving
scalpels, blades) blue colored marking or chemical treatment &

2.5

destruction

Figure 1: Colour Coding for the segregation of Medical Waste

Steps in the management of Medical Waste

We now come to one of the most important segments that has to be dealt with when handling

medical waste. Some of the steps to ensure proper management of Medical Waste are as follows:

1.

Proper labelling of bins: The bins and bags should carry the biohazard symbol indi-

cating the nature of waste to the patients and public.

Collection: The collection of biomedical waste involves use of different types of container
from various sources of biomedical wastes like Operation Theatre, laboratory, wards,
kitchen, corridor etc. The containers/ bins should be placed in such a way that 100%
collection is achieved. Sharps must always be kept in puncture-proof containers to avoid

injuries and infection to the workers handling them.

Storage: Once collection occurs then biomedical waste is stored in a proper place. Seg-
regated wastes of different categories need to be collected in identifiable containers. The
duration of storage should not exceed for 8-10 hrs in big hospitals (more than 250 bedded)
and 24 hrs in nursing homes. Each container may be clearly labelled to show the ward or
room where it is kept. The reason for this labelling is that it may be necessary to trace
the waste back to its source. Besides this, storage area should be marked with a caution

sign.
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4. Transportation: The waste should be transported for treatment either in trolleys or in
covered wheelbarrow. Manual loading should be avoided as far as for as possible. The
bags / Container containing BMWs should be tied/lidded before transportation. Before
transporting the bag containing BMWs, it should be accompanied with a signed document
by Nurse/Doctor mentioning date, shift, quantity and destination. Special vehicles must
be used so as to prevent access to, and direct contact with, the waste by the transportation
operators, the scavengers and the public. The transport containers should be properly
enclosed. The effects of traffic accidents should be considered in the design, and the driver
must be trained in the procedures he must follow in case of an accidental spillage. It should

also be possible to wash the interior of the containers thoroughly.

5. Personnel safety devices: The use of protective gears should be made mandatory for

all the personnel handling waste.

e Gloves: Heavy-duty rubber gloves should be used for waste handling by the waste
retrievers. This should be bright yellow in colour. After handling the waste, the
gloves should be washed twice. The gloves should be washed after every use with

carbolic soap and a disinfectant. The size should fit the operator.

e Aprons, gowns, suits or other apparels: Apparel is worn to prevent contamination of
clothing and protect skin. It could be made of cloth or impermeable material such
as plastic. People working in incinerator chambers should have gowns or suits made

of non-inflammable material.

e Masks: Various types of masks, goggles, and face shields are worn alone or in com-
bination, to provide a protective barrier. It is mandatory for personnel working in
the incinerator chamber to wear a mask covering both nose and mouth, preferably

a gas mask with filters.

e Boots: Leg coverings, boots or shoe-covers provide greater protection to the skin
when splashes or large quantities of infected waste have to be handled. The boots

should be rubber-soled and anti-skid type. They should cover the leg up to the ankle.
6. Cleaning devices:

e Brooms: The broom shall be a minimum of 1.2 m long, such that the worker need
not stoop to sweep. The diameter of the broom should be convenient to handle. The

brush of the broom shall be soft or hard depending on the type of flooring.

e Dustpans: The dustpans should be used to collect the dust from the sweeping op-
erations. They may be either of plastic or enamelled metal. They should be free of
ribs and should have smooth contours, to prevent dust from sticking to the surface.

They should be washed with disinfectants and dried before every use.

e Mops: Mops with long handles must be used for swabbing the floor. They shall be
of either the cloth or the rubber variety. The mop has to be replaced depending on
the wear and tear. The mechanical-screw type of mop is convenient for squeezing

out the water.
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e Vacuum cleaners: Domestic vacuum cleaners or industrial vacuum cleaners can be

used depending on the size of the rooms.
7. Storage devices

e Dustbins: It is very important to assess the quantity of waste generated at each point.
Dustbins should be of such capacity that they do not overflow between each cycle of
waste collection. Dustbins should be cleaned after every cycle of clearance of waste
with disinfectants. Dustbins can be lined with plastic bags, which are chlorine-free,

and colour coded as per the law.
8. Handling devices

e Trolleys: The use of trolleys will facilitate the removal of infectious waste at the

source itself, instead of adding a new category of waste.

e Wheelbarrows: Used to transfer the waste from the point source to the collection
centres. There are two types of wheelbarrow — covered and open. Wheelbarrows are
made of steel and provided with two wheels and a handle. Care should be taken
not to directly dump waste into it. Only packed waste (in plastic bags) should be
carried. Care should also be taken not to allow liquid waste from spilling into the
wheelbarrow, as it will corrode. These are ideal for transferring debris within the

institution. Wheelbarrows also come in various sizes depending on the utility.

e Chutes: Chutes are vertical conduits provided for easy transportation of refuse ver-
tically in case of institutions with more than two floors. Chutes should be fabricated
from stainless steel. It should have a self-closing lid. These chutes should be fumi-
gated everyday with formaldehyde vapours. The contaminated linen (contaminated
with blood and or other body fluids) from each floor should be bundled in soiled
linen or in plastic bags before ejecting into the chute. Alternately, elevators with
mechanical winches or electrical winches can be provided to bring down waste con-
tainers from each floor. Chutes are necessary to avoid horizontal transport of waste
thereby minimizing the routing of the waste within the premises and hence reducing

the risk of secondary contamination

2.6 Plasma Pyrolysis of Medical Waste

Plasma is the state of matter obtained by breaking down atoms into ions and electrons by
the process of ionization. Plasmas can quite easily reach temperatures of 10,000 degree Celcius.
Plasma technologies offer unique solutions to meet the increasing demands of dematerialization
to develop ecologically sensible industrial practices like high temperatures, high chemical reac-
tivity, high energy density and ability to process solids, liquids and gases. In plasma pyrolysis,
generation of heat is independent of chemistry of material used. It is fast heating — 5000 °C can
be achieved in milliseconds. It is fast quenching and consumes small quantity of gas. The high
ultraviolet radiation flux destroys pathogens and waste to be treated, could be dry or wet. It is

possible to recover energy in the form of carbon monoxide and hydrogen.
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The Facilitation Centre for Industrial Plasma Technologies (FCIPT) of the Institute of
Plasma Research, Gandhinagar, Gujarat, an aided institute of DAE, has developed Pyroly-

sis System using plasma for disposal of medical waste [10].

Technical Brief of Plasma Pyrolyser: Plasma Pyrolysis System incorporates “CASS”
(Complete Automated Safety System) that ensures an operating environment, which exceeds
any safety norms. The cost of installing, operating and maintaining the Plasma Pyrolysis System
is on par with conventional incineration facilities of similar capacity. The inherent simplicity,
lack of moving parts, system redundancy, automation, and proven stability of the Plasma Pyrol-
ysis System ensure very high reliability with minimal downtime and maintenance requirements.
Electricity requirement is very low. It is less than 1 kWh per kg of charge (approx.). With the
exception of start up and shut down, the plasma field is normally sufficient to maintain operating
temperatures. With the additions of oxygen generators and co-generation, operating cost are

well below and conventional waste processing or energy production systems in the market today.

The Bio-Medical Waste Disposal System is under actual field trials at the Gujarat
Cancer Research Institute, Ahmedabad since August 2001. It has been operated for disposal of
infected bio-medical waste including plastics, cotton, pathological waste and tissues. The waste
is treated for disposal as collected from the hospital without any segregation or pre-treatment.
The system was run on a continuous basis for 4 to 5 hours per day. The rate of disposal was 18
- 20 kg/h. In December 2001, the system was tested for more than 100 hours for various combi-
nations of waste material and operating conditions. More than 500 kg. of infected bio-medical
waste was treated. The system was run exclusively for treated human tissues and pathological
waste. During trials 100 kg of tissues were treated. The System is microprocessor controlled,
allowing one individual to operate one processing reactor systems, including loading and tem-

perature controls.

Plasma torch: The plasma torch consists of a water-cooled tungsten tip with an auxiliary
copper anode surrounding it. The water-cooled anode cup is placed in front of the cathode.
Both anode and cathode are surrounded by a magnetic field coil, which produces an axial mag-
netic field parallel to both the anode and cathode axes. The whole torch assembly is mounted
on a flange of 100 mm diameter in a side port. The arc is initiated between the cathode and
the auxiliary anode, and then transferred to the copper anode. The spectroscopic measurement
suggests that the temperature near the cathode is around 20,000 K, while near the anode tip it
is around 7000 K. The temperature is around 1500 K close to the waste. In addition, the hot

flame rises and spreads out. The plasma-arc jet is shown in Figure 2.

Power supply: Fifty kW DC power supply used for plasma pyrolysis experiments has been
developed indigenously. This power supply has open circuit voltage of 400 V, arc voltage of 125
V and maximum arc current of 400 amperes. It has a high voltage (3.5 kV) and high frequency
(4 MHz) arrangement to strike the arc.

15



Figure 2: Plasma Torch producting high temperature plasma

Gas-injection system: N gas is injected through the torch and flow of gas is controlled
using rotameters. There is an arrangement in the torch port to introduce steam or compressed

air in the reaction zone of the primary chamber.

Process chamber: The process chamber is inclined as shown in Figure. It is made up of
mild steel and has waste-feeding arrangement, mild-steel shell, glass-wool shielding, etc. The
feeder has a double-door facility, where the inner door has a fish-mouth locking which avoids
leakage of the gas. The door operates pneumatically. The outer door of the feeder has proper
sealing to prevent gases from spreading in the working environment, while the inner door is

opened for feeding the material.

Secondary chamber: While disposing contaminated hospital waste, one important re-
quirement is that the gases, which come out from the primary chamber, have to pass through a
temperature zone of 1050 + 50 °C in the secondary chamber. Hot gases produced in the primary
chamber contain hydrocarbons, carbon monoxide and hydrogen in excess quantity. These gases
are burnt in the secondary chamber with some excess quantity of air and they convert into CO2
and H20. The secondary chamber is designed in such a way that the residence time of the gases

is sufficient for combustion reactions to be completed.

The quenching-cum-scrubbing system: The quenching-cum-scrubbing system is made
up of mild steel and has ceramic lining at the inner wall of the chamber. NaOH solution pH 12,
at normal temperature is circulated with the help of a fountain in the chamber. Hot gases that
pass through the scrubber are quenched to inhibit recombination reactions. The height of the
scrubber is selected in such a way so that it maintains sufficient residence of the gases to reduce
the temperature from 1000 °C to ambient. Use of dilute NaOH will remove HC] from the resid-
ual gases. Induced draft fan and chimney Induced draft fan is used to take the residual gases

at the chimney’s height where these gases are released in the atmosphere, The fan also serves

16



to create negative pressure in the primary chamber and to suck excess air in to the secondary

chamber for combustion reactions.

Description of pyrolysis process: An arc is produced between the two electrodes using
dc power supply. A high voltage, high frequency generator is used to strike the plasma. The
magnetic field rotates the arc root at the anode to reduce electrode wear. No gas is employed
to produce plasma. The required process temperature, approximately 900 °C in the primary
chamber, is attained rapidly. The pyrolyzed gases are burned in the presence of excess air in
the secondary chamber. Combustion of the pyrolyzed gases takes place and a long flame is
observed, The gas samples are collected at the outlet of the secondary chamber for analysis.
After combustion, the hot gases are passed through a quencher-cum-scrubber, where the gases
are quenched in alkaline water (12 pH) which brings down their temperature to 80 °C or less.
In case chlorinated waste is pyrolysed, HCI is one of the gaseous components produced that is
scrubbed-off by the alkaline solution. The quenching restricts recombination reactions which
otherwise produce toxic compounds. The residual gases are released with the help of an induced
draft fan and chimney. Destruction of Bacillus stearothermophilus and Bacillus subtilis bacteria
grown on stainless-steel strips and exposed to the plasma environment in the primary chamber,
has been demonstrated .
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Figure 3: Plasma Pyrolysis setup

2.7 Syngas production and combustion

We have seen that the plasma gasification is a good alternative for processing biomedical

waste. The syngas produced has a medium potential for electricity generation. In the best
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scenario, the payback is 6 years, although the technology is expensive.

Brazil has problems with the incorrect disposal of biomedical waste (BW) and studies of
new technologies to eliminate this problem is becoming increasingly important. The plasma
gasification technology provides reliable destruction of polluting materials, produces an inert
slag and syngas. The slag can be used in civil construction, whereas syngas can be burned in
the internal combustion engine (ICE) for electricity and heat generation. To collaborate with
the insertion of plasma gasification technology in the Brazilian scenario, thermodynamic and
economic studies of the use of BW plasma gasification are developed in this work and applied to
conditions of Guaratingueta city, Sao Paulo state, Brazil. Initially, the thermodynamic analysis
was performed to determine the energetic efficiency of the plasma gasification system coupled
with the ICE and the electricity generation potential was determinate. Economic studies were
conducted to determine syngas and electricity production cost, the payback period and expected
annual saving of the system. Thermodynamic analysis showed that the energy efficiency of the
plasma gasifier is 78.58% and that there is a potential to produce 31% of the electricity required
in the BW plasma gasification system. Through economic analysis the payback obtained was 6

years.

Despite its drawbacks, this process is being studied. Due to its high temperature, during
the processing of plastics by plasma pyrolysis, energy from these materials is mainly recovered
in the form of synthesis gas. This gas can be used to generate the necessary electricity to power
plasma devices, which reduces its consumption. The synthesis gas mainly consists of carbon
monoxide and hydrogen and may be used for fuel production (such as methanol, diesel oil) or

hydrogen extraction.

The clean exhaust steam released in the process is known as syngas which can further be
used indigenously to produce electricity and other fermentation purposes. The generation of
electricity from the syngas can able to reproduce the electricity up to 31% of that used for the
plasma pyrolysis operation. The exact thermodynamics of the pyrolysed gas must be evaluated

for the regeneration of electricity |13].

The reactions involved in the pyrolysis which leads to syngas production and combustion

processes are:

CeH1005(cellulose) 4+ heat — CHy +2 CO+3 H,O+3 C
[-CHg — CHy—],, (polyethylene) + H2O + heat — xCHy + yH, 4+ 2CO

1

CO + 502 —  COs AH = —67.63 kcal
1

Hy + 502 — HO AH = —57.82 kecal

We find that upon combustion of a 1:1 mixture of Syngas (CO + Hsz), an exothermic reaction

18



occurs with the release of AH = —125.45 kecal
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2.8 Preliminary plant design

We have used the software Aspen Plus v11 to design the plant which produces syngas.

The design of this plant is illustrated in the image below.

|

[%
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Figure 4: Preliminary Plant Design

Medical Waste is first separated into biomass and plastic, after which the biomass undergoes

drying and the plastic is heated before being sent to the pyrolysis unit. The dried biomass is

also pyrolysed, and the gases are sent to the Gasifier. The Gasifier takes in a mixture of air and

steam, and produces syngas (CO + Hy)

Inorder to extract energy from the produced syngas, we make use of the design as suggested
by Safarian et.al., [15]. The design is illustrated below.
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Figure 5: Plant Design to extract power

The gasifier used here is a downdraft gasifier. After production of the syngas in the block
named SYNGAS, the gas is then sent to be combusted along with a mixture of heated air. The
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heat produce from the exothermic reaction is used to drive a turbine, that generates power. In
this work done by Safarian et.al., Penge Robinson equation of state with Boston-Mathias alpha
function (PR-BM) is applied to calculate physical properties of the conventional components in
the gasification process. HCOALGEN and DCOALIGT models are also employed for enthalpy
and density of biomass and ash which are non-conventional components. The factors that affect
how much power can be generated are Moisture Content (wt%), Volatile Materials (wt% dry
basis), Fixed Carbon (wt% dry basis), ash (wt% dry basis), Carbon (wt% dry basis), Oxygen
(wt% dry basis), Hydrogen(wt% dry basis), Nitrogen (wt% dry basis), Sulphur (wt% dry basis),
gasifier temperature, Gasifier Temperature (°C) and air to fuel ratio (kgair/kgdrybiomass).
These properties are derived from the Proximate and Elemental analysis of a variety of biomass

types such as Alder-fir sawdust, Balsam bark, Birch bark, e.t.c.

2.9 Neural Networks

Artificial neural networks (ANN) have been developed as generalizations of mathematical
models of biological nervous systems. The advantage of the brain is its effective use of massive
parallelism, the highly parallel computing structure, and the imprecise information-processing

capability [1].

Artificial neural networks have been applied to problems ranging from speech recognition to
prediction of protein secondary structure, classification of cancers and gene prediction. In 1943,
McCulloch and Pitts modeled a neuron as a switch that receives input from other neurons and,
depending on the total weighted input, is either activated or remains inactive. The weight, by
which an input from another cell is multiplied, corresponds to the strength of a synapse—the
neural contacts between nerve cells. These weights can be both positive (excitatory) and negative
(inhibitory) [8]. For instance for a given set of weights and biases, mathematically the output
of a neuron can be expressed as

Yin = Zwixi +b (1)

=1

)= L if fyim) = 0, @)
0, if f(ymn) <9,
where 0 is the threshold value and f is the activation function.

The neural network (Fig. 1) can be trained on a set of examples using a special learning
rule. The weights are changed in proportion to the difference (error) between the target output
(t), and the network output (y), for each example. The error is a function of all the weights and
forms an irregular multidimensional complex hyperplane with many peaks, saddle points, and
minima. Using a specialized search technique, the learning process strives to obtain the set of
weights that corresponds to the global minimum. Some of the most common problems that can

be undertaken using ANNs are [3].

e Pattern Classification: Deals with assigning an unknow input pattern using super-

vised learning, to one of several specified classes based on one or more properties that
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The Perceptron

Threshold

Figure 6: Analogy between a biological neuron and an artificial neuron.

characterize a given class.

e Clustering: Clustering is performed via unsupervised learning in which the clusters
(classes) are formed by exploring the similarities or dissimilarities between the input pat-
terns based on their inter-correlations. The network assigns ‘similar’ patterns to the same

cluster.

e Function Approximation: Function approximation (modeling) involves training ANN
on input—output data so as to approximate the underlying rules relating the inputs to the
outputs. Multilayer ANNs are considered universal approximators that can approximate
any arbitrary function to any degree of accuracy and thus are normally used in this
application. Function approximation is applied to problems (i) where no theoretical model
is available, i.e., data obtained from experiments or observations are utilized, or (ii) to
substitute theoretical models that are hard to compute analytically by utilizing data

obtained from such models.

e Forecasting: Forecasting includes training of an ANN on samples from a time series
representing a certain phenomenon at a given scenario and then using it forother scenarios
to predict (forecast) the behavior at ubsequent times. That is, the network will predict
Y (t+1) from one or more previously known historical observations [e.g., Y (t—2), Y (t—1),
and Y (t), where ¢ is the time step].

In this work, we focus on using an ANN that carries out function approximation to predict
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the output power of a downdraft biomass gasifier plant, based upon 11 input parameters. The

details are provided in the upcoming sections.

2.10 Activation Functions

The activation function is a non-linear transformation that we do over the input before
sending it to the next layer of neurons or finalizing it as output [7]. The activation function
plays a major role in the success of training deep neural networks. It manipulates the presented
data through gradient descent and afterwards produce an output for the neural network, that
contains the parameters in the data. These AFs are often referred to as a transfer function in
some literature and help decide if a neuron should be fired or not. Many activation functions

exist in literature. Some of them are discussed below [12].

e Sigmoid Function: This is referred to as logistic function or squashing function in some
literature It is a bounded differentiable real function, defined for real input values, with

positive derivatives everywhere given by,

1
@)= (3)
1
05
o
-6 -4 -2 0 2 4 6

Figure 7: Sigmoid Activation Function

e Hyperbolic Tangent Function: The hyperbolic tangent function, also known as tanh
function is a smoother, zero centered function whose range lies between -1 and 1. It is
defined as,

et —e T

fz) = (4)
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Figure 8: tanh Activation Function

¢ Softmax Function: The Softmax function is another types of activation function used
in neural computing. It is used to compute probability distribution from a vector of real
numbers. The Softmax function produces an output which is a range of values between 0
and 1, with the sum of the probabilities been equal to 1. It can be computed as
evi

fxi) = e (5)

Figure 9: Softmax Activation Function

e Rectified Linear Unit Function: The ReLU is a faster learning AF, which has proved
to be the most successful and widely used function. It offers the better performance and
generalization in deep learning compared to the Sigmoid and tanh activation function.

The ReLLU activation function performs a threshold operation to each input element where

24



values less than zero are set to zero thus the ReLU is given by

T, if s Z 0
f(x) = maz{0, z} = (6)
0, ifz;<0

Figure 10: ReLLU Activation Function

2.11 Optimization and Stochastic Gradient Descent

Optimization deals with the selection of a best element, with regard to some criterion,
from some set of available alternatives. The standard form for a single-objective, non-linear,
constrained optimization problem is given by [17]:

Minimize: f(x)
Subject to:  g;(x) <0 ji=12...m
hi(x) =0 k=1,2,...p

i <z <xiy 1=12,...n

f(x) is the objective function needed to be minimized.

We have 2 kinds of optimization algorithms

e Local Optimization Algorithms: This consists of optimizing a function at a locality. Some

methods include:
1. Gradient Based Algorithms: In this methods, the basic idea is to iteratively find the
optimum using the equation
2 = 277 4 @81 (8)

Where « is the step size taken to reach the new point x¢ and SY is the new search

direction in which to move given by the direction opposite to increasing gradient.
2. Newton’s Method

3. Unconstrained Optimization
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4. Constrained Optimization

5. Non-Gradient Based Methods
e Global Optimization algorithms

1. Evolutionary Algorithms

2. Deterministic Algorithms

Stochastic Gradient Descent: The term “stochastic” means a mechanism or a method
connected to a random possibility; therefore, instead of the entire data set for each iteration,
a few samples are randomly chosen. In SGD, a hyperparameter termed “momentum” may
also be introduced. Momentum is designed to learn quickly, especially in the face of wide
curvatures, small yet noisy gradients, or stable gradients [5]. The usage of a momentum term
is another approach that can assist the network to get rid of local minima. The momentum
term increases for dimensions whose gradients point in the same directions and reduces updates
fordimensions whose gradients change directions. As a result, we gain faster convergence and

reduced oscillation [14].

Te—>> (>

(a) (b)

Figure 11: (a) SGD without Momentum (b) SGD with Momentum

(a) 60 =0 —v;, where

v = o + Ve J(0; 2%y ©

(b) 0=0-nVeJ(0;2'y")

Adam Optimization: Adam is a method of SGD optimization that measures adaptable
learning rates for each parameter. Adam is one of the most common step-size strategies in the
field of neural networks. The name was taken from Adaptive Moments. Adam lowers computing

costs, needs less execution memory. It is a combination of the following Algorithms

e Adaptive Gradient Algorithm (AdaGrad) that maintains a per-parameter learning rate
that improves performance on problems with sparse gradients (e.g. natural language and

computer vision problems).

e Root Mean Square Propagation (RMSProp) that also maintains per-parameter learning
rates that are adapted based on the average of recent magnitudes of the gradients for the
weight (e.g., how quickly it is changing). This means the algorithm does well on online

and non-stationary problems (e.g., noisy) |14].
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We can compute the Adam Optimization as follows. We calculate 2 parameters m; and v;:

oL
my = Bimy—1 + (1 - 51) [M]
§L 12
v = Bavi—1 + (1 — P2) [(M} (10)
L Ty A~ U
my = 1_ ivvt— ].—,65

Substituting these in the general equation given by (8), we get

o
x = —a| — 11
I (f+) (11)

2.12 Pytorch Deep Learning Framework

PyTorch is an open-source library that can be used for free by everyone. It provides us with
a scalable, multiplatform programming interface for implementing and running machine learning
algorithms. Over the years, PyTorch has evolved into one of the two most popular frameworks
for deep learning. It uses dynamic computational graphs, which have the advantage of being
more flexible compared to its static counterparts. Dynamic computational graphs are debugging
friendly: PyTorch allows for interleaving the graph declaration and graph evaluation steps. You
can execute the code line by line while having full access to all variables. This is a very important
feature that makes the development and training of NNs very convenient. Another key feature
of PyTorch, is its ability to work with single or multiple graphical processing units (GPUs).
This allows users to train deep learning models very efficiently on large datasets and large-scale
systems. Last but not least, PyTorch supports mobile deployment, which also makes it a very

suitable tool for production. PyTorch performs its computations based on a directed acyclic
graph (DAG) [16].

Computation graph implementing
the equation z=2x(a-b) + ¢

a, b, c: Input tensors (scalar)
r,, I, Intermediate result tensors

z: Final result

Figure 12: How a computational graph works?

2.13 Neural Network Architecture

In this work, we consider a fully connected neural network with 3 layers. The first layer is an

27



input layer with 11 input neurons. These inputs are a vector of the values of Moisture Content
(wt%), Volatile Materials (wt% dry basis), Fixed Carbon (wt% dry basis), ash (wt% dry basis),
Carbon (wt% dry basis), Oxygen (wt% dry basis), Hydrogen(wt% dry basis), Nitrogen (wt%
dry basis), Sulphur (wt% dry basis), gasifier temperature, Gasifier Temperature (°C) and air
to fuel ratio (kgair/kgdrybiomass). The second layer is a hidden layer with 40 neurons as this
structure minimizes the overall mean squared loss calculated. The third layer is the output
layer, which has one output value. The sigmoid activation function is used in the hidden layer,

given by the equation
1

f(x) = Fp— (12)

The neural network is constructed with the architecture as follows.
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Figure 13: Neural Network Architecture
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3 Code Snippets

This section details snippets of the code which was used to construct the artifical neural

network. First, we make the necessary imports.

import matplotlib.pyplot as plt

import pandas as pd

; import numpy as np

import torch

5 import torch.nn as nn

import torch.optim as optim
from torch.utils.data import TensorDataset, Dataloader

from sklearn.model_selection import train_test_split

Listing 1: Making necessary imports

The import torch imports the PyTorch package, and its related modules. We utilize the
torch.nn, torch.optim, torch.utils.data packages in this work. torch.nn is a package that
contains basic building blocks for the computational graphs. torch.optim is a package for im-
plementing various optimization algorithms. Data loading utility onto the constructed PyTorch
Model is offered the torch.utils.data.DataLoader We also import the train_test_split from

the scikit-learn package inorder to split our data into testing and training sets.

class NeuralNetwork (nn.Module):

def __init__(self, input_size, hidden_size, output_size):
super (NeuralNetwork, self).__init__()
self .firstlayer = nn.Linear (input_size, hidden_size)
self.secondlayer = nn.Linear(hidden_size, output_size)

def forward(self, x):
x = self.firstlayer (x)
x = nn.Sigmoid () (x)
x = self.secondlayer (x)

return x

def predict(self, x):
pred = self.forward(x)

return pred

Listing 2: Construction of the Network Class

Here, we create a python class named NeuralNetwork for our neural network by inheriting
the parent class nn.Module. We create a constructor with 3 input parameters denoting the
sizes of the nodes: input_size, hidden_size, and output_size. The constructor also initializes
2 values self.firstlayer, and self.secondlayer with the nn.Linear unit, each taking in the
respective sizes of the input and output nodes. The Linear Unit is given by the following
equation:

y=wlX+b (13)

where X is the vector of inputs, w is the weight vector, and b is the bias vector. Now, we
create two functions name forward and predict. The forward function takes in the input vec-

tor X and does the forward propagation step of the neural network training. The output from
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2

the self.firstlayer is passed to the hidden layer. The activation function used in the hidden
layer is given by nn.Sigmoid(), the output of which is passed to the self.secondlayer. The

output is y is given from this second layer.

We now begin training the model using 10000 epochs. We specify a learning rate of
0.0002 to have a nice and steady learning process, and we consider the loss/cost function as
nn.MSELoss(). The nn.MSELoss() is calculated as

L= 23w —y) (14

=1
We call optim.Adam() function to invoke the Adam Optimizer discussed in the previous
sections to minimize the network parameters with the learning rate of 0.0002. We also keep a
track of the loss and the accuracy of the training process inorder to track the effectiveness of

our model.

network.predict(x) takes in the input vector x and feeds it to the neural network. The
forward propagation is done, and the predicted value is stored in prediction. The loss is
calculated, and then the backpropagation step is done using loss.backward(). The optimizer
is invoked which changes the weights and biases inorder to reduce the loss function. We assume
an error of +£ 20 kW is acceptable and a prediction within this error range is acceptable.

num_epochs = 10000
log_epochs = 100

; learning_rate = 0.0002

4

6

lossfunc = nn.MSELoss ()

5 optimizer = optim.Adam(network.parameters(), lr=learning_rate)
loss_hist = [0] * num_epochs
7 accuracy_hist = [0]*num_epochs

for epochs in range(num_epochs):

count = 0

for x, y in train_dl:
prediction = network.predict (x)
loss = lossfunc(prediction, y)
loss.backward ()
optimizer.step ()
optimizer.zero_grad ()
loss_hist [epochs] += loss.item()*y.size (0)

if (torch.abs(prediction - y) <= torch.tensor(20)): count += 1

loss_hist [epochs] /= len(train_dl.dataset)

accuracy_hist [epochs] = count/len(train_dl.dataset)

if epochs ¥ log_epochs==0:
print (£’Epoch {epochs} Loss ’f’{loss_hist[epochs]:.4f}’)
print (£ ’Epoch {epochs} Accuracy ’f’{accuracy_hist[epochs]:.4f}’)

Listing 3: Training the Model

30



V)

plt.plot(loss_hist)

plt.plot (accuracy_hist)

test_predictions = network.predict(X_test)
print (X_test [50])

print (test_predictions [50])

Listing 4: Checking the loss and accuracy over 10000 epochs and making predictions

We track the loss and accuracy over the 10000 iterations, and plot the data. The results

have been discussed in the forthcoming section.

4 Results and Discussion

The plots for the loss function and accuracy of the predictions over 10000 iterations is shown

below.

Loss vs Epochs
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Figure 14: Plot of Loss vs Epochs (decreasing trend is observed)

We can see that our optimizer has reduced the loss, and increased the accuracy. Therefore,
we can conclude that our model is performing as expected. The accuracy achieved on the train-

ing set is placeholder value% after training the model for 10000 epochs.

The objective of this study is to predict the net output power (kW) from the systems derived
from various kinds of biomass feedstocks under atmospheric pressure and various operating con-
ditions. The results show how the generated power through the downdraft biomass gasification
integrated with power production plant can be successfully predicted by applying a neural net-
work with 40 hidden neurons in the hidden layer and using back-propagation algorithm. The

model is applicable for a wide variety of feedstocks.
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Accuracy vs Epochs
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Figure 15: Plot of Accuracy vs Epochs (increasing trend is observed)

5 Further Work

We have been able to use the fully connected feed forward neural network built using Py-
Torch, to make accurate predictions of the output power generated based on the 11 input
parameters of Moisture Content (wt%), Volatile Materials (wt% dry basis), Fixed Carbon (wt%
dry basis), ash (wt% dry basis), Carbon (wt% dry basis), Oxygen (wt% dry basis), Hydro-
gen(wt% dry basis), Nitrogen (wt% dry basis), Sulphur (wt% dry basis), gasifier temperature,
Gasifier Temperature (°C) and air to fuel ratio (kgair/kgdrybiomass). Currently, we have over
1000 datapoints over which this neural network is being built. One way to improve upon the re-
sults achieved in this work would be to include more experimental data for the biomass analysis

and output power generated. This can lead to more accurate predictions of the power generated.

Further, this work can be extended to simulate power production upon combustion of syngas
produced from pyrolysis of plastic waste. The Proximate and Elemental analysis can be carried
out for different kinds of plastic wastes, which can then be fed to the feed forward network

inorder to make predictions on the output power (kW).
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